mTORC2 sustains thermogenesis via Akt‐induced glucose uptake and glycolysis in brown adipose tissue

نویسندگان

  • Verena Albert
  • Kristoffer Svensson
  • Mitsugu Shimobayashi
  • Marco Colombi
  • Sergio Muñoz
  • Veronica Jimenez
  • Christoph Handschin
  • Fatima Bosch
  • Michael N Hall
چکیده

Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation

Brown adipose tissue is the primary site for thermogenesis and can consume, in addition to free fatty acids, a very high amount of glucose from the blood, which can both acutely and chronically affect glucose homeostasis. Here, we show that mechanistic target of rapamycin (mTOR) complex 2 has a novel role in β3-adrenoceptor-stimulated glucose uptake in brown adipose tissue. We show that β3-adre...

متن کامل

Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism

Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipoge...

متن کامل

Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT...

متن کامل

A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization

In this study, we define a new role for lipocalin prostaglandin D synthase (L-PGDS) in the control of metabolic fuel utilization by brown adipose tissue (BAT). We demonstrate that L-PGDS expression in BAT is positively correlated with BAT activity, upregulated by peroxisome proliferator-activated receptor γ coactivator 1α or 1β and repressed by receptor-interacting protein 140. Under cold-accli...

متن کامل

β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: Mediation through the mTOR pathway

OBJECTIVE Today, the presence and activity of brown adipose tissue (BAT) in adult humans is generally equated with the induced accumulation of [2-18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) in adipose tissues, as investigated by positron emission tomography (PET) scanning. In reality, PET-FDG is currently the only method available for in vivo quantification of BAT activity in adult humans. The un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016